On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices.
نویسندگان
چکیده
This work presents a novel approach for the automatic detection of pathological voices based on fusing the information extracted by means of mel-frequency cepstral coefficients (MFCC) and features derived from the modulation spectra (MS). The system proposed uses a two-stepped classification scheme. First, the MFCC and MS features were used to feed two different and independent classifiers; and then the outputs of each classifier were used in a second classification stage. In order to establish the best configuration which provides the highest accuracy in the detection, the fusion of information was carried out employing different classifier combination strategies. The experiments were carried out using two different databases: the one developed by The Massachusetts Eye and Ear Infirmary Voice Laboratory, and a database recorded by the Universidad Politécnica de Madrid. The results show that the combination of MFCC and MS features employing the proposed approach yields an improvement in the detection accuracy, demonstrating that both methods of parameterization are complementary.
منابع مشابه
Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)
Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...
متن کاملAutomatic age detection in normal and pathological voice
Systems that automatically detect voice pathologies are usually trained with recordings belonging to population of all ages. However such an approach might be inadequate because of the acoustic variations in the voice caused by the natural aging process. In top of that, elder voices present some perturbations in quality similar to those related to voice disorders, which make the detection of pa...
متن کاملDeep Neural Networks for Voice Quality Assessment Based on the GRBAS Scale
In the field of voice therapy, perceptual evaluation is widely used by expert listeners as a way to evaluate pathological and normal voice quality. This approach is understandably subjective as it is subject to listeners’ bias which high interand intra-listeners variability can be found. As such, research on automatic assessment of pathological voices using a combination of subjective and objec...
متن کاملGMM-based Classifiers for the Automatic Detection of Obstructive Sleep Apnea
The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those systern^ include the usage of a^optimized representation of the spectral envelope, either based on cepstral coefficients from the mel-scaled Fourier spectral envelope (Mel-Freq...
متن کاملComparison of HMM and DTW methods in automatic recognition of pathological phoneme pronunciation
In the paper recently proposed Human Factor Cepstral Coefficients (HFCC) are used to automatic recognition of pathological phoneme pronunciation in speech of impaired children and efficiency of this approach is compared to application of the standard Mel-Frequency Cepstral Coefficients (MFCC) as a feature vector. Both dynamic time warping (DTW), working on whole words or embedded phoneme patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logopedics, phoniatrics, vocology
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2011